
BUCHAREST UNIVERSITY OF ECONOMIC STUDIES 

 

 

Faculty of Economic Cybernetics, Statistics and Informatics 

Department of Economic Informatics and Cybernetics 

APPLIED REVERSE ENGINEERING AND VULNERABILITY 

RESEARCH IN CYBERSECURITY 

INGINERIE INVERSĂ ȘI ANALIZA VULNERABILITĂȚILOR 

APLICATE ÎN SECURITATEA CIBERNETICĂ 

– PhD Thesis – 

Summary 

 

 

Ph.D. Candidate: ȘTEFAN SABIN NICULA 

Scientific Supervisor: Prof. RĂZVAN DANIEL ZOTA, Ph.D. 

  



ABSTRACT 
 

This thesis delves into advanced cybersecurity methodologies with a focus on reverse 

engineering, vulnerability research, and exploitation techniques within Windows operating 

systems, particularly in the context of the Internet of Things (IoT). The study emphasizes the 

challenges of analyzing complex, closed-source software environments, with a special 

emphasis on Windows-based systems, which differ significantly from Unix-based 

environments in terms of kernel architecture and security mechanisms.  

The thesis provides a comprehensive methodology that integrates reverse engineering, fuzzing, 

and malware analysis to identify and mitigate vulnerabilities in complex software 

environments. Key aspects include in-depth explorations of Windows kernel security, browser 

exploitation, and the application of fuzzing techniques to uncover security flaws. The work also 

proposes innovative solutions such as the use of honeypots for real-time exploit detection, 

automated debugging of browsers to discover zero-day vulnerabilities, and the integration of 

machine learning in malware analysis to streamline detection processes.  

Windows Host Honeypot with Hypervisor Monitoring is a novel method for detecting exploits 

in the wild by setting up a Windows host honeypot, combined with hypervisor-based 

monitoring. Automated Browser Exploit Detection represents the solution that involves using 

automated debugging and memory sanitization tools to monitor for browser exploits. 

Automated Malware Analysis with Machine Learning to address the challenge of bulk malware 

analysis, this approach integrates machine learning with virtual kernel debugging. Reverse 

Engineering Techniques for Cybersecurity Applications is part of the research that provides a 

detailed guide on applying reverse engineering techniques to various cybersecurity challenges, 

including malware analysis, vulnerability research, and binary analysis.  

These solutions contribute to the field by offering innovative approaches to proactive 

cybersecurity, particularly in environments where traditional methods may fall short. The 

research underscores the necessity of integrating advanced reverse engineering techniques with 

existing security frameworks to better protect against emerging threats. 

KEYWORDS: REVERSE ENGINEERING, VULNERABILITY RESEARCH, EXPLOIT 

DEVELOPMENT, WINDOWS SECURITY, MALWARE ANALYSIS, FUZZING, 

BROWSER EXPLOITATION, INTERNET OF THINGS (IOT) 



 

Table of contents 
 

1. Introduction ....................................................................... Error! Bookmark not defined. 

1.1 Thesis structure ...................................................... Error! Bookmark not defined. 

1.2 Thesis research methodology ................................. Error! Bookmark not defined. 

1.3 Original solutions .................................................... Error! Bookmark not defined. 

2. Economic impact and analysis model ............................. Error! Bookmark not defined. 

2.1 Economic considerations ........................................ Error! Bookmark not defined. 

2.2 Exploits used in ransomware attacks ...................... Error! Bookmark not defined. 

2.3 Public freelance vulnerability research .................... Error! Bookmark not defined. 

2.4 Personal contributions ............................................ Error! Bookmark not defined. 

3. IoT and vulnerability research ......................................... Error! Bookmark not defined. 

3.1 The IoT field ........................................................... Error! Bookmark not defined. 

3.2 Statistics interpretation and indicators .................... Error! Bookmark not defined. 

3.3 IoT Business Applications and Reverse Engineering ............. Error! Bookmark not 

defined. 

3.4 Personal contributions ............................................ Error! Bookmark not defined. 

4. Software vulnerability research ....................................... Error! Bookmark not defined. 

4.1 Types of vulnerabilities affecting binaries ................ Error! Bookmark not defined. 

4.2 Common binary exploitation techniques ................. Error! Bookmark not defined. 

4.3 Protection mechanisms derived from exploitation techniques Error! Bookmark not 

defined. 

5. Windows internals security .............................................. Error! Bookmark not defined. 

5.1 The Windows authentication flow and components Error! Bookmark not defined. 

5.2 User Account Control (UAC) ................................... Error! Bookmark not defined. 

5.3 Elevating a Windows process ................................. Error! Bookmark not defined. 

5.4 Different Windows process security descriptors ...... Error! Bookmark not defined. 

5.4.1 Object Manager and Security Identifier (SID) ...... Error! Bookmark not defined. 

5.4.2 Process access tokens ....................................... Error! Bookmark not defined. 

5.4.3 Windows security descriptor ............................... Error! Bookmark not defined. 

5.4.4 Process integrity level ......................................... Error! Bookmark not defined. 

5.4.5 Windows AppContainer ...................................... Error! Bookmark not defined. 

5.4.6 Control Flow Guard (CFG) .................................. Error! Bookmark not defined. 

5.4.7 Process execution properties .............................. Error! Bookmark not defined. 

5.5 Personal contributions ............................................ Error! Bookmark not defined. 



6. Windows virtualization security ....................................... Error! Bookmark not defined. 

6.1 Virtualization-Based Security (VBS) ........................ Error! Bookmark not defined. 

6.2 Windows kernel attack surface ............................... Error! Bookmark not defined. 

6.3 Analyzing Windows drivers ..................................... Error! Bookmark not defined. 

6.4 Personal contributions ............................................ Error! Bookmark not defined. 

7. Malware analysis ............................................................... Error! Bookmark not defined. 

7.1 Malware static analysis ........................................... Error! Bookmark not defined. 

7.2 Malware dynamic analysis ...................................... Error! Bookmark not defined. 

7.3 Anti-debugging and anti-analysis techniques .......... Error! Bookmark not defined. 

7.4 C++ decompilation and reversing ........................... Error! Bookmark not defined. 

7.5 Automatic exploit debugging and detection using hypervisors ..... Error! Bookmark 

not defined. 

8. Fuzzing .............................................................................. Error! Bookmark not defined. 

8.1 Coverage-guided fuzzing ........................................ Error! Bookmark not defined. 

8.2 Blackbox fuzzing ..................................................... Error! Bookmark not defined. 

8.3 Whitebox and greybox fuzzing ................................ Error! Bookmark not defined. 

8.4 Mutation and grammar-based fuzzing ..................... Error! Bookmark not defined. 

8.5 Fuzzing instrumentation .......................................... Error! Bookmark not defined. 

8.6 Fuzzing campaigns completed ............................... Error! Bookmark not defined. 

8.7 Personal contributions ............................................ Error! Bookmark not defined. 

9. Browser exploitation......................................................... Error! Bookmark not defined. 

9.1 Analysis of a Chrome 0-day exploit ......................... Error! Bookmark not defined. 

9.1.1 Use-After-Free .................................................... Error! Bookmark not defined. 

9.1.2 The FileReader API ............................................ Error! Bookmark not defined. 

9.1.3 Heap Spraying & leaking the address of a known variable . Error! Bookmark not 

defined. 

9.1.4 Object layout in V8’s Heap .................................. Error! Bookmark not defined. 

9.1.5 Obtaining Remote Code Execution ..................... Error! Bookmark not defined. 

9.2 Personal contributions ............................................ Error! Bookmark not defined. 

10. Conclusions ...................................................................... Error! Bookmark not defined. 

10.1 Original solutions .................................................... Error! Bookmark not defined. 

10.2 Future research ...................................................... Error! Bookmark not defined. 

10.3 Results dissemination ............................................. Error! Bookmark not defined. 

10.3.1 Scientific journals ............................................ Error! Bookmark not defined. 

10.3.2 Scientific conferences ..................................... Error! Bookmark not defined. 

10.3.3 Scientific seminars .......................................... Error! Bookmark not defined. 



10.3.4 Other presentations and blog posts ................ Error! Bookmark not defined. 

REFERENCES ................................................................................................................... 17 

ANNEX A: Fuzzing campaign on Windows API ..................... Error! Bookmark not defined. 

ANNEX B: The second fuzzing campaign on Windows APIs Error! Bookmark not defined. 

 

  



 

 

INTRODUCTION 
 

The process of reverse engineering can be applied successfully in many different cybersecurity 

areas. It represents a workflow and a combination of techniques to understand closed-source 

software with minimal or no documentation beforehand. The expected results include clear 

information about the inner workings of software, the internal routines, and the purpose of the 

analyzed sample. The process includes disassembling a binary, decompilation, debugging, 

static and dynamic analysis. We often see it being used in actions such as malware analysis and 

vulnerability research.  

The vulnerability research field is an ever-increasing topic that started to get a lot of traction 

and attention in the last decade. It can be comparable to the widely known bug-bounty programs 

where researchers are focusing their efforts on testing web applications, mobile applications, 

networks, or source code review. However, vulnerability research on binaries and desktop 

applications requires completely different approaches and a similar difference is present in the 

exploits and vulnerability classes. Still, the two domains have the same goal of discovering and 

reporting vulnerabilities in different software solutions.  

Reverse engineering can be applied in many different areas as is not necessarily related to 

software on its own, but rather a concept of approaching a closed environment with the purpose 

of understanding it by constantly probing for results and observing output. As a general 

description, it could be defined as the deep-level understanding of a self-preserving technology 

that was intended to be kept private in the form of no documentation or minimal support in 

debugging the presented solution. 

Similarly, in the last decade, we can clearly see an ever-ascending trend the Internet of Things 

(IoT) industry as more devices are reaching the market every year. The security maturity of the 

IoT field is increasing, however, judging by the number of publicly reported vulnerabilities 

affecting those solution, we can note a high chance of identifying easy-to-catch vulnerabilities 

even in the top vendors.  

In terms of dedicated development for IoT software and hardware, the continuous research and 

development resulted in custom-made solutions intended for specific devices. However, on a 



general level, most of the marketed solutions are based on similar operating systems, public 

libraries, and general software that is used across many industries and not necessarily 

developed for IoT-related programs. 

The thesis tackles a variety of subjects related to exploitation techniques, operating system 

internals, the process of reverse engineering, debugging, and tools used, and includes 

dedicated chapters for each subject with practical examples. The main purpose of the research 

is focused exclusively and revolves around the Windows operating system with Intel x86 and 

x64 CPU support. As opposed to Unix-based environments, Microsoft has a different approach 

with regard to kernel development and the implementation of kernel-related mechanisms. 

Ultimately, the high-level concepts are the same as in the case of any other major operating 

system. My affinity for Windows-based software and the challenge of closed-source kernel 

components was one of the main motives for completing this research. 

The current level of documentation and general knowledge for Windows-based exploits is 

scattered around in various sources. Exploiting development in software and high-value target 

still represents a learning process based solely on one’s curiosity and self-learning drive. 

Moreover, we can see a big difference in public research, presentations, and trainings with 

support on Windows-based technologies as opposed to the Unix-based environments, 

especially significant in the IoT industry. This should not be corelated with a lack of resources 

of meaningful research on Windows side as in the last 5 years, many more papers have been 

published tackling this subject with technical-oriented research based on different exclusive 

scenarios and others that had a more general approach towards it. Being a highly specialized 

niche of software security represents a challenge when gathering materials and references for 

a solid workflow and foundation towards achieving a complex level of understanding the 

reverse engineering process of a highly complex solution such as an operating system kernel 

or a browser. Furthermore, the exploitation techniques and vulnerability discovery mechanisms 

are highly customized based on the attack vectors and the exploited environment. With the 

increasing implementation of protection and mitigation mechanisms, this raises challenges as 

some techniques are becoming obsolete while others suffer major improvements in order to 

bypass the protections.  

THESIS OBJECTIVES 
 

The main objective of the research thesis is to identify, define, test, and apply reverse 



engineering concepts over a broad spectrum of low-level software testing with support on the 

Windows operating system on x86 and x64 architecture from a vulnerability research 

perspective. This can be achieved by understanding the attack surface, the offensive security 

approach of external actors when it comes to finding a 0-day vulnerability in complex solutions 

and the process of leveraging exploitation techniques in order to obtain a fully working exploit 

code. Another key point is evaluating the abuse and in the wild usage of such exploits and 

applying the identified techniques in order to research and create a relevant proposal that is 

able to prevent or detect malicious behavior on the victim software or machine. One final aspect 

of the research is providing examples and an applicable baseline research that can be used in 

order to proactively identify vulnerabilities and report them to vendors as to limit the exposure 

and increase the overall security posture. 

The necessity of current research is determined by a missing link between various public 

writings and papers that span the industry, including conference presentations, business and 

technical blog posts, and academic papers. The aim of the research is to frame multiple contexts 

of reversing while applying the same baseline knowledge in terms of analysis techniques used, 

mindset when approaching the debugging perspective, and understanding the target software. 

Although many examples presented such as browser exploits, kernel attacks, and malware 

samples are making use of very different approaches and have their own internal knowledge, 

the process of understanding, debugging, and consolidating remains largely the same. Having 

knowledge of how to apply vulnerability research in a proactive way can help to elaborate 

defense techniques that can later mitigate future exploitation attempts or, in some cases, can 

fully deny a specific technique. 

Looking at the level of knowledge in the field of 0-day vulnerability research, the depth of 

technicality and research is very deep; the majority of released exploits and research oftentimes 

are linked with a vast understanding of internals of such systems, at the point of kernel level of 

low-level processes including security protections that might conflict with the exploit 

development process. Each target represents a technical challenge on its own. Having a broad 

understanding of the overall process equips a researcher with the base knowledge to tackle each 

project confidently and can further aid in meaningful progress from both the offensive and 

defensive perspectives. In terms of hunting 0-day vulnerabilities in the wild, most solutions 

active in the market have proprietary systems, closed source, and have limited to no possibility 

of customization or the ability to add on-premises detection. 



THESIS STRUCTURE AND METHODOLOGY 
 

The thesis is divided into 10 main chapters as follows: 

Chapter 1: Introduction is the first chapter presented in the thesis and opens the research 

topic with an overview of the structure and the research methodology used. The introduction 

covers general subjects regarding reverse engineering and the main scope of work. It also 

explains the current level of documentation in the field and the personal motivation for the 

research while showcasing its necessity. Moreover, a brief abstract is presented for each 

original solution presented in the thesis. 

Chapter 2: Economic impact and analysis model continues with the initial research by taking 

a look at the economic impact of attacks conducted over the Internet on the overall software 

landscape. It describes topics such as malware campaigns such as ransomware attacks and the 

economic damage created, while also taking a look at different campaign starting points. 

Among common delivery mechanisms, such as social engineering attacks, we can also note the 

usage of zero-day or n-day exploits for publicly known vulnerabilities. There is also a direct 

correlation between freelance vulnerability research and public disclosure through various 

security programs. Moreover, there is an analysis of the direct economic damage between 2021 

and 2022, and a considerable increase can be noted.  

Chapter 3: IoT and vulnerability research explores the Internet of Things landscape and 

provides interpreted statistics from developers that include security risks, operating system 

usage, and trends. The chapter represents the link between the main theme of IoT in the 

business area and the scope of the research thesis which is focused on the security aspect of 

specific IoT developments with support for Windows. We identify that a portion of the IoT 

segment is using Windows Embedded (Windows IoT) as the main operating system, which 

shares many architectural similarities and internals with the main Windows NT kernel. 

Chapter 4: Software vulnerabilities research expands on the idea of conducting research on 

different vulnerabilities affecting the operating system, binaries, and other complex solutions 

such as browsers. We list the most common security bugs and their associated particularities. 

The perspective of binary exploitation is compared with the current protection mechanisms 

available at the binary and operating system level. There is also a categorization based on the 

most effective attack and exploitation technique with an emphasis on bypassing the said 



security controls. Each type of vulnerability is presented in detail, and, in contrast, the 

mitigation features implemented on different levels. More advanced methods of bypassing 

protection often require the usage of multiple security bugs that can be used in conjunction. 

Chapter 5: Windows internals security is one of the main support chapters that details the 

Windows internals and architecture behind the most important routines and features 

encountered throughout the thesis research. The first key points presented are the mechanisms 

of elevating a Windows process, a feature that will be mentioned in the next chapters during 

the exploitation and post-exploitation phase. Windows internals security is a subchapter that 

follows the architecture of Windows kernel through various topics such as the Object Manager 

and Security Descriptors, process access tokens and integrity levels, and process execution 

properties. This research provides a baseline knowledge for the implementation and technical 

analysis during the practical evaluation of the thesis. Additionally, having prior knowledge of 

internal processes and routines helped in understanding how different security bugs occur in 

the Windows kernel and other complex software systems such as browsers. 

Chapter 6: Windows virtualization security is a specific Windows internals topic described 

briefly in the previous chapter and analyzed in more detail. Virtualization-based security 

represents an edge in protection against various exploitation techniques targeted against the 

Windows operating system. It offers an additional layer of privilege and adds restriction 

methods that are harder to bypass as they can become very situational. We also explore the 

Windows kernel attack surface and take a look at how Windows drivers can be evaluated from 

a security perspective. The drivers are the link between user mode and kernel mode and many 

instances, especially in the IoT sphere where devices and sensors are embedded in the IoT 

solution for the business and functional logic.  

Chapter 7: Malware analysis provides details on the malware analysis processes from a 

defensive perspective, leveraging the operating system knowledge to monitor the activity and 

successfully reverse engineer a given sample. Details about different evasion mechanisms are 

presented along with the possible solutions to bypass the protection mechanism that a malware 

might develop. The first two subsections deal with the static and dynamic analysis model with 

various practical examples that are most commonly encountered during malware analysis. 

Moreover, since the C/C++ programming language is one of the most commonly used in 

malware development, we take a look at useful techniques to facilitate an optimal reverse 

engineering session. Using the level of knowledge obtained from the previous chapters and the 



malware analysis one, a solution based on hypervisor is presented for automatic detection of 

exploits in the wild. The system can also be used to debug proof of concepts, a technique that 

can provide valuable information that can help in creating generic detections. 

Chapter 8: Fuzzing is a key component of the offensive security research field that can be 

used to automatically identify security bugs in the code of the analyzed software. There are 

various types of fuzzing processes and methods. In this chapter, we review some of the main 

methods of implementing fuzzing in cases where the researcher has access to the code or from 

a black-box approach. The results show that some of the key components of every fuzzing 

campaign are the instrumentation methods and corpus collection combined with an optimal 

harnessing mode. 

Chapter 9: Browser exploitation shows a practical exploitation of a public CVE affecting the 

Chromium browser which is a use-after-free vulnerability in a sandboxed Chromium process. 

We take a look at the public-source code available and draw conclusions based on the internal 

debugging process in order to obtain read and write primitives by leveraging internal V8 

routines and structures. Additionally, WebAssembly is used to forge a shellcode and place it in 

the heap memory using heap spraying techniques. Finally, the exploit is executed, and the 

results show that the Chromium process runs in a sandboxed environment, and an additional 

vulnerability located at the operating system level is required in order to create a bypass. The 

results enforce that the security of a system is closely connected by all of its system, and the 

underlying OS plays a major role in the security of a product. 

Chapter 10: Conclusions is the final chapter that presents the conclusions of the thesis, all 

contributions resulting from the research, the dissemination of publication during the research 

time, and future work. 

 

This thesis delves into an integrated security analysis framework, which combines reverse 

engineering, fuzzing, malware analysis, and vulnerability research. Focused on IoT systems 

using Windows operating systems, the study aims to provide background and methods for 

uncovering and minimizing vulnerabilities, improving the security posture against 

sophisticated cyber threats. 

The increasing incorporation of IoT devices across various sectors demands increased security 

due to their complex interconnectivity and the critical nature of their applications. This paper 

underscores the importance of a holistic security approach by integrating reverse engineering 



with traditional security practices to protect IoT systems against vulnerabilities and attacks, 

particularly in Windows environments. The following methodology structure was followed 

during the thesis research: 

1. Conduct a literature review and obtain technical knowledge 

• IoT and Software Security Challenges: Current issues and security considerations 

specific to IoT and software systems. 

• Windows vulnerability research and internals: An overview of vulnerabilities 

inherent to Windows used in IoT contexts and details about relevant Windows internal 

security processes applied to the thesis subject. 

• Fuzzing techniques: The role of fuzzing in proactive security testing and applied 

fuzzing campaigns. 

• Malware Analysis: Examination of malware analysis techniques and the impact of 

malware attacks on Windows systems. 

• Reverse engineering: Insights into how reverse engineering can aid in understanding 

and securing software, focusing on reverse engineering techniques and methods. 

2. Research methodology 

• System setup: Configuration of an experimental IoT environment incorporating 

Windows OS. Gathering technical knowledge about reverse engineering practices and 

evaluating operating system processes. 

• Reverse engineering: Analyze software to identify security flaws in undocumented 

functionalities. 

• Vulnerability analysis: Using specialized tools to perform reverse engineering in 

browsers. 

• Fuzzing Implementation: Tailoring fuzzing tools to identify vulnerabilities within the 

operating system. 



• Malware Simulation and Analysis Techniques Introducing malware to observe 

interactions with existing vulnerabilities and system defenses. 

3. Vulnerability and reverse engineering research 

• Identification of vulnerabilities through reverse engineering: Techniques to 

uncover or debug hidden vulnerabilities and security weaknesses using reverse 

engineering. 

• Impact assessment and mitigation strategies: Evaluating the risks associated with 

identified vulnerabilities and proposing robust mitigation and detection strategies. 

4. Results and discussion 

• Integration Benefits: Evaluating how combining reverse engineering with fuzzing and 

malware analysis provides a deeper understanding of security challenges in the 

Windows environment. 

• Proposed solutions: Presentation of original solutions that combine all the techniques 

discussed in the thesis.  

• Conclusions: Concluding remarks summarizing critical findings and providing 

concrete recommendations for security improvement. Outline of suggested protocols 

and security measures based on the thesis analysis. 

5. Future work 

• Advanced reverse engineering techniques: Further development of reverse 

engineering methods to enhance detection and mitigation of sophisticated threats. 

• Cross-platform security analysis: Expansion of the research framework to include 

IoT systems operating on different platforms. 

ORIGINAL SOLUTIONS 
 

The following ideas are presented as possible solution concepts designed to add improvements 

or resolve the issues identified during the research stage, specifically looking into automated 

mechanisms to integrate reverse engineering programmatic techniques with complex 



interpretations: 

1. Identifying exploits used in the wild via a Windows host honeypot and a hypervisor 

monitoring process. The process of debugging Windows-related kernel vulnerabilities can 

be used in conjunction with address sanitizers to catch zero-day exploits by exposing 

specific services on the public internet. Windows logs are very broad a targeting all the 

system-level services can create a storage and processing problem, however, scoping 

specific features such as the RDP protocol, SMB or RPC will limit the inbound information 

at permit automatic debugging without losing performance in the processing power of the 

operating system. Having important ports like the ones previously mentioned can be a 

perfect candidate for monitoring against attacks targeting publicly facing Windows 

machines. Logging outside the honeypot configuration is also a must as the debugged 

virtual machine can be considered as compromised.  

2. Identifying exploits targeting browsers by making use of automated debugging capabilities 

and memory sanitizers. Similarly, having debugging capabilities and instrumentation when 

fuzzing on the browser can create an environment for monitoring active exploits and zero-

days. A setup can be created similar to the manual instrumentation during fuzzing 

campaigns with address memory sanitizers enabled in a virtual machine that has automatic 

URL loading. The URLs can be gathered from public malware repositories with domains 

known as malicious. Loading such URLs inside multiple browsers and having debuggers 

and sanitizers active creates an environment where potential undisclosed vulnerabilities can 

be observed. The internal virtual machine used for this automation must the sandboxed in 

a strict environment as the detonation process will compromise the entire operating system. 

3. Automated malware analysis using machine learning and automated virtual kernel 

debugging on Windows. Bulk malware analysis is one of the problems encountered during 

the sample triaging process as a researcher is always limited by resources and time when 

facing manual work. However, this can be automated using machine learning algorithms 

based on file similarity and combined with kernel debugging using drivers registered in 

order to bypass userland anti-detection methods. Through kernel mode monitoring and 

introspection, the full behavior of the analyzed sample can be analyzed by implementing 

kernel-level hooks on the Windows API calls made by the sample. Additionally, various 

static and dynamic flags can be extracted from the execute file in order to create an elaborate 

view of the sample and provide the means to create detections using a combination of flags 

and behavioral properties. When using machine learning, the corpus provided for negative 



and positive feedback is very important, as important as the relearning process of the 

algorithm that can be user-based.  

4. A walkthrough on how and where to apply reverse engineering techniques for different 

purposes in cybersecurity, which includes the analysis of PE binary files, a research topic 

that branches into malware analysis and vulnerability research. Furthermore, having a deep 

understanding of the underlying operating system that offers direct support on the analyzed 

topic is presented as a mandatory skill that will improve the analysis process, add new 

techniques to a researcher's arsenal, and help in translating debugging techniques into 

automated processes that can ease the binary analysis process. 

CONCLUSIONS 
 

Reverse engineering is considered a highly technical subject when dealing with closed-source 

software as it requires a large time investment and the complexity of the analyzed target scales 

directly with the effort required to understand and successfully analyze the scope. However, 

the methodology can be applied to many different areas, as the concepts remain largely the 

same, but the debugging, tools and internal knowledge differ in each case. The result of 

reversing, however, can produce very meaningful results that can be later managed based on 

the scope of the assessment. The research conducted aims to tackle a wide variety of applicable 

scenarios where reverse engineering can be used in the context of vulnerability research and 

software debugging for both offensive and defensive purposes. The IoT environment connects 

many of the technologies that take part in the process of creating a consumer product. The 

overall security posture of such devices and business applications is defined by the security 

structure of the entire ecosystem. This includes powerful engines such as browsers and the 

operating system kernel, all of them exposing different areas that attackers could target. By 

analyzing the current state of attacks and vulnerability usage in the wild, we can note an ever-

increasing trend in the utilization of 0-days for launching potent malware campaigns against 

Windows-based systems or attacks that exploit vulnerabilities in browsers, sometimes in 

conjunction with operating system exploits in order to bypass browser protections. The 

required knowledge and capabilities to investigate such issues are highly technical; however, 

the results have a large impact on the customer base as the affected products are used by billions 

of users. 

The thesis combines a number of subjects linked by reverse engineering techniques, 



understanding of internals, and co-dependencies that enable analysis and research from both 

offensive and defensive applications. One of the solutions presented provides a setup that can 

be implemented with hypervisors and heuristic algorithms capable of detecting exploits 

executed on the system. An example of fuzzing campaign is showcased, and metrics are 

recorded while in progress in order to display the adjustments made on different components 

such as the corpus used and the fuzzing harness. A browser exploit walkthrough is researched 

and the steps required to obtain code execution starting from a use-after-free primitive are 

researched. All the practical cases and solutions tackled in this thesis are supported by the 

Windows internals research and the Windows hypervisor protection knowledge described that 

helped to understand the attack surface and available indicators. 

  



REFERENCES 
 

[1] Chadha, R., Shalom, G.S., Anand, V.K. and Goel, A., 2022, November. A Study on Exploit 

Development. In 2022 7th International Conference on Computing, Communication and 

Security (ICCCS) (pp. 1-7). IEEE. 

[2] Tandon, A. and Nayyar, A., 2019. A comprehensive survey on ransomware attack: A 

growing havoc cyberthreat. Data Management, Analytics and Innovation: Proceedings of 

ICDMAI 2018, Volume 2, pp.403-420. 

[3] Digging into the numbers one year after Log4Shel, (Dec.2022), 

https://www.scmagazine.com/feature/third-party-risk/digging-into-the-numbers-one-year-

after-log4shell, retrieved Dec.2022 

[4] 2022 hacker powered security report, (Feb.2022), 

https://www.hackerone.com/resources/i/1487910-2022-hacker-powered-security-report/3, 

retrieved March 2022 

[5] What is the Cost of a Data Breach in 2023?, https://www.upguard.com/blog/cost-of-data-

breach, Aug.2023, retrieved Aug.2023 

[6] The latest 2023 Ransomware Statistics (updated August 2023), https://aag-it.com/the-latest-

ransomware-statistics, retrieved Aug.2023 

[7] National Institute of Standards and Technology, ICAT Metabase, 

https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/cwe-over-time 

[8] Zerodium Exploit Acquisition Program, https://zerodium.com/program.html, retrieved July 

2022 

[9] Householder, A.D., Chrabaszcz, J., Novelly, T., Warren, D. and Spring, J.M., 2020, August. 

Historical Analysis of Exploit Availability Timelines. In CSET@ USENIX Security 

Symposium. 

[10] Goel, A.K., Rose, A., Gaur, J. and Bhushan, B., 2019, July. Attacks, countermeasures and 

security paradigms in IoT. In 2019 2nd international conference on intelligent computing, 

instrumentation and control technologies (ICICICT) (Vol. 1, pp. 875-880). IEEE. 



[11] Pelaez, A., 9 IoT Operating Systems to Use in 2021 [List & Comparison] (May 2021), 

https://ubidots.com/blog/iot-operating-systems/, retrieved Nov.2021 

[12] 2020 IoT Developer Survey Key Findings (Dec.2020), 

https://f.hubspotusercontent10.net/hubfs/5413615/2020%20IoT%C2%A0Developer%20Surv

ey%20Report.pdf, retrieved March 2021 

[13] 2022 IoT Developer Survey Key Findings (Sep.2022), 

https://f.hubspotusercontent10.net/hubfs/5413615/2020%20IoT%C2%A0Developer%20Surv

ey%20Report.pdf, retrieved January 2024 

[14] 2023 IoT Developer Survey Key Findings (Oct.2020), 

https://f.hubspotusercontent10.net/hubfs/5413615/2020%20IoT%C2%A0Developer%20Surv

ey%20Report.pdf, retrieved January 2024 

[15] Nawir, M., Amir, A., Yaakob, N. and Lynn, O.B., 2016, August. Internet of Things (IoT): 

Taxonomy of security attacks. In 2016 3rd international conference on electronic design 

(ICED) (pp. 321-326). IEEE. 

[16] Chen, J., Diao, W., Zhao, Q., Zuo, C., Lin, Z., Wang, X., Lau, W.C., Sun, M., Yang, R. 

and Zhang, K., 2018, February. IoTFuzzer: Discovering Memory Corruptions in IoT Through 

App-based Fuzzing. In NDSS. 

[17] The Security Development Lifecycle (Chapter 1), May 2006, 

https://download.microsoft.com/download/f/c/7/fc7d048b-b7a5-4add-be2c-

baaee38091e3/9780735622142_SecurityDevLifecycle_ch01.pdf, retrieved Dec.2020 

[18] Verizon's "Data Breach Investigations Report (DBIR) 2020", January 2020, 

https://enterprise.verizon.com/resources/executivebriefs/2019-dbir-executive-brief.pdf, 

retrieved January 2020 

[19] Veracode State of Software Security Report, February 2024, 

https://www.veracode.com/sites/default/files/2024-02/SOSS-Report-2024.pdf, retrieved 

February 2024 



[20] 2019 Thales Data Threat Report, 2019, 

https://cpl.thalesgroup.com/resources/encryption/2019/data-threat-report, retrieved Feburary 

2020 

[21] The Cisco 2020 Data Privacy Benchmark Study, January 2020, 

https://www.cisco.com/c/dam/global/en_uk/products/collateral/security/2020-data-privacy-

cybersecurity-series-jan-2020.pdf, retrieved January 2020 

[22] Ponemon Institute's "Cost of a Data Breach Report 2020", 2020, 

https://www.ibm.com/security/digital-assets/cost-data-breach-

report/1Cost%20of%20a%20Data%20Breach%20Report%202020.pdf, retrieved March 2020 

[23] CYBERSECURITY The new source of competitive advantage for retailers, May 2018, 

https://www.capgemini.com/fi-en/wp-content/uploads/sites/27/2018/05/cybersecurity-in-

retail-report_v2-10.pdf, retrieved April 2020 

[24] The Global State of Information Security Survey 2018, January 2018, 

https://www.pwc.com/sg/en/publications/assets/gsiss-2018.pdf, retrieved April 2020 

[25] The Cost Of Fixing An Application Vulnerability, May 2009, 

https://www.darkreading.com/cyber-risk/the-cost-of-fixing-an-application-vulnerability, 

retrieved May 2020 

[26] Sushil Kumar, Avinash Kaur, Ashish Jolly, Mohammed Baz, Omar Cheikhrouhou, 2021, 

Mathematical Problems in Engineering 

[27] Mitre CVE Buffer Overflow search result, https://cve.mitre.org/cgi-

bin/cvekey.cgi?keyword=Buffer+Overflow, retrieved May.2019  

[28] Erick Leon, Ștefan D. Bruda, Counter-measures against stack buffer overflows in 

GNU/Linux operating systems., The International Workshop on Parallel Tasks on High 

Performance Computing, Procedia Computer Science 83, 2016, Volume 83, pages 1301 – 1306  

[29] A detailed description of the Data Execution Prevention (DEP) feature in Windows XP 

Service Pack 2, Windows XP Tablet PC Edition 2005, and Windows Server 2003, (Jul.2017) 



https://support.microsoft.com/en-us/help/875352/a-detailed-description-of-the-data-

execution-pr evention-dep-feature-in, retrieved Dec.2018 

[30] Daniel, M., Honoroff, J. and Miller, C., 2008. Engineering Heap Overflow Exploits with 

JavaScript. WOOT, 8, pp.1-6. 

[31] Liu, D., Zhang, M. and Wang, H., 2018, October. A robust and efficient defense against 

use-after-free exploits via concurrent pointer sweeping. In Proceedings of the 2018 ACM 

SIGSAC Conference on Computer and Communications Security (pp. 1635-1648). 

[32] Sood, A.K. and Enbody, R.J., 2011. Browser exploit packs-exploitation tactics. VIRUS 

BULLETIN, Barcelona, Spain. 

[33] Farah, T., Shelim, R., Zaman, M., Hassan, M.M. and Alam, D., 2017. Study of race 

condition: A privilege escalation vulnerability. In WMSCI 2017-21st World Multi-Conference 

Syst. Cybern. Informatics, Proc (Vol. 2, pp. 100-105). 

[34] Yan Fen, Yuan Fuchao, Shen Xiaobing, Yin Xinchun, Mao Bing, A New Data 

Randomization Method to Defend Buffer Overflow Attacks, International Conference on 

Applied Physics and Industrial Engineering, Physics Procedia 24, Volume 24, Part C, 2012, 

pages 1757-1764  

[35] The magic gadget, (Sep.2016), https://github.com/m1ghtym0/magic_gadget_finder, 

retrieved Apr.2019  

[36] Cheng, L., Ilbeyi, B., Bolz-Tereick, C.F. and Batten, C., 2020, February. Type freezing: 

exploiting attribute type monomorphism in tracing JIT compilers. In Proceedings of the 18th 

ACM/IEEE International Symposium on Code Generation and Optimization (pp. 16-29). 

[37] Ding, Y., Wei, T., Wang, T., Liang, Z. and Zou, W., 2010, December. Heap taichi: 

exploiting memory allocation granularity in heap-spraying attacks. In Proceedings of the 26th 

Annual Computer Security Applications Conference (pp. 327-336). 

[38] Gadaleta, F., Younan, Y. and Joosen, W., 2010, January. BuBBle: A Javascript Engine 

Level Countermeasure against Heap-Spraying Attacks. In ESSoS (pp. 1-17). 



[39] Position Independent Executables (PIE), (Nov.2012), 

https://access.redhat.com/blogs/766093/posts/1975793, retrieved Jan.2019  

[40] Address Space Layout Randomization, (Mar.2003), 

https://pax.grsecurity.net/docs/aslr.txt, retrieved Feb. 2020.  

[41] Bypassing ASLR - Part I, (May 2015), 

https://sploitfun.wordpress.com/2015/05/08/bypassing-aslr-part-i/, retrieved Dec.2018  

[42] Hardening ELF binaries using Relocation Read-Only (RELRO), (Jan.2019), 

https://www.redhat.com/en/blog/hardening-elf-binaries-using-relocation-read-only-relro, 

retrieved Jan.2019  

[43] Buffer overflow protection, (Jun.2018), 

https://en.wikipedia.org/wiki/Buffer_overflow_protection#Canaries, retrieved Jan.2019  

[44] Return-to-libc Exploit, (Feb.11), https://medium.com/@nikhilh20/return-to-libc-exploit-

aa3fe6fb0d69, retrieved Mar.2019  

[45] Bypassing DEP with ROP (32-bit), (Dec.2017), https://bytesoverbombs.io/bypassing-dep-

with-rop-32-bit-39884e8a2c4a, retrieved Mar.2019  

[46] Rogowski, R., Morton, M., Li, F., Monrose, F., Snow, K.Z. and Polychronakis, M., 2017, 

April. Revisiting browser security in the modern era: New data-only attacks and defenses. In 

2017 IEEE European Symposium on Security and Privacy (EuroS&P) (pp. 366-381). IEEE. 

[47] Liu, J. and Xu, C., 2018. Pwning microsoft edge browser: From memory safety 

vulnerability to remote code execution. 

[48] Format String Exploitation-Tutorial, https://www.exploit-db.com/docs/english/28476-

linux-format-string-exploitation.pdf, retrieved Apr.2019  

[49] Ryan "elfmaster" O'Neill, Learning Linux Binary Analysis, Packt, 2016 

[50] How to hijack the Global Offset Table with pointers for root shells, (Apr.2006), 

https://www.exploit-db.com/papers/13203, retrieved Apr.2019  



[51] Smashing the Stack, (Apr.2014), http://phrack.org/issues/49/14.html, retrieved Oct.2018  

[52] Ryan "elfmaster" O'Neill, Learning Linux Binary Analysis, Packt, 2016  

[53] Reis, C., Barth, A. and Pizano, C., 2009. Browser Security: Lessons from Google Chrome: 

Google Chrome developers focused on three key problems to shield the browser from attacks. 

Queue, 7(5), pp.3-8. 

[54] Russinovich, M.E., Solomon, D.A. and Ionescu, A., 2012. Windows internals, part 2. 

Pearson Education. 

[55] Pietrek, M., 1993. Windows Internals: The Implementation of the Windows Operating 

Environment. Addison-Wesley Longman Publishing Co., Inc.. 

[56] Yosifovich, P., Solomon, D.A. and Ionescu, A., 2017. Windows Internals, Part 1: System 

architecture, processes, threads, memory management, and more. Microsoft Press. 

[57] Windows Access Control For pentesters — part 1, March 2021, 

https://medium.com/@jasemalsadi/intro-to-windows-access-control-part-1-ff4c20b918e7, 

retrieved April 2021 

[58] Russinovich, M. and Solomon, D.A., 2009. Windows internals: including Windows server 

2008 and Windows Vista. Microsoft press. 

[59] Provecho, E.F., 2017. Testing User Account Control (UAC) on Windows 10. 

[60] Parent Process vs. Creator Process, January 2021, 

https://scorpiosoftware.net/2021/01/10/parent-process-vs-creator-process/, retrieved January 

2022 

[61] Brown, K., 2000. Programming Windows Security. Upper Saddle River, NJ: Addison-

Wesley. 

[62] Govindavajhala, S. and Appel, A.W., 2006. Windows access control demystified. 

Princeton university. 



[63] Access Token, July 2021, https://learn.microsoft.com/en-

us/windows/win32/secauthz/access-tokens, retrieved July 2021 

[64] Wu, J., Arrott, A. and Osorio, F.C.C., 2014, October. Protection against remote code 

execution exploits of popular applications in Windows. In 2014 9th International Conference 

on Malicious and Unwanted Software: The Americas (MALWARE) (pp. 26-31). IEEE. 

[65] Eagle, C., 2011. The IDA Pro Book, 2nd Edition. No Starch Press. 

[66] Wei, T., Wang, T., Duan, L. and Luo, J., 2010, October. Secure dynamic code generation 

against spraying. In Proceedings of the 17th ACM conference on Computer and 

communications security, pp. 738-740. 

[67] Calbucci, M., 2000. Windows 2000 Security Descriptors. Dr. Dobb's Journal: Software 

Tools for the Professional Programmer, 25(11), pp.57-61. 

[68] Ferguson, J., 2008. Reverse engineering code with IDA Pro. Syngress. 

[69] Probert, D.B., Windows Kernel Internals Windows Service Processes. Microsoft 

Corporation-http://www. iu-tokyo. ac. jp/edu/training/ss/lecture/newdocuments/Lecrures/1 

1WindowsServices/WindowsServices. ppt. 

[70] Assi, M.J., Fahad, A.A. and Al-Sarray, B., 2022. Root Cause Analysis and Improvement 

In Windows System Based on Windows Performance Toolkit WPT. Iraqi Journal of Science, 

pp.5046-5057. 

[71] Li, X., Wen, Y., Huang, M.H. and Liu, Q., 2011, December. An overview of bootkit 

attacking approaches. In 2011 Seventh International Conference on Mobile Ad-hoc and Sensor 

Networks pp. 428-431. IEEE. 

[72] Probert, D., 2010. Windows Kernel Architecture Internals. 

[73] Willems, C., 2011. Internals of Windows memory management (not only) for malware 

analysis. None. 

[74] Gadaleta, F., Strackx, R., Nikiforakis, N., Piessens, F. and Joosen, W., 2014. On the 

effectiveness of virtualization-based security. arXiv preprint arXiv:1405.6058. 



[75] Deogirikar, J. and Vidhate, A., 2017, February. Security attacks in IoT: A survey. In 2017 

International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC) 

(pp. 32-37). IEEE. 

[76] Isolated User Mode (IUM) Processes - Trustlets, July 2021, 

https://learn.microsoft.com/en-us/windows/win32/procthread/isolated-user-mode--ium--

processes#trustlets, retrieved July 2021 

[77] Lukacs, S., Lutas, A.V., Lutas, D.H. and Sebestyen, G., 2014, May. Hardware 

virtualization based security solution for embedded systems. In 2014 IEEE International 

Conference on Automation, Quality and Testing, Robotics (pp. 1-6). IEEE. 

[78] Xiang, C., Bhagoji, A.N., Sehwag, V. and Mittal, P., 2021, August. PatchGuard: A 

Provably Robust Defense against Adversarial Patches via Small Receptive Fields and Masking. 

In USENIX Security Symposium (pp. 2237-2254). 

[79] Pearce, L., 2018. Windows Internals and Malware Behavior: Malware Analysis Day 3 

(No. LA-UR-18-25467). Los Alamos National Lab. (LANL), Los Alamos, NM (United States). 

[80] Custer, H., 1992. Inside windows NT. Microcomputer Applications. 

[81] Windows vs Linux, https://echelonlinux.org/, retrieved December 2021 

[82] Cerrudo, C., 2005. Hacking windows internals. Blackhat Europe, Amsterdam, 

Netherlands. 

[83] Sahel Alouneh, Mazen Kharbutli, Rana AlQurem, Stack Memory Buffer Overflow 

Protection Based on Duplication and Randomization, The 4th International Conference on 

Emerging Ubiquitous Systems and Pervasive Networks, Procedia Computer Science 21, 2013, 

pages 250 – 256  

[84] Moser, A., Kruegel, C. and Kirda, E., 2007, May. Exploring multiple execution paths for 

malware analysis. In 2007 IEEE Symposium on Security and Privacy (SP'07) (pp. 231-245). 

IEEE. 

[85] Gandotra, E., Bansal, D. and Sofat, S., 2014. Malware analysis and classification: A 

survey. Journal of Information Security, 2014. 



[86] Sikorski, M. and Honig, A., 2012. Practical malware analysis: the hands-on guide to 

dissecting malicious software. No Starch Press. 

[87] Monnappa, K.A., 2018. Learning Malware Analysis: Explore the concepts, tools, and 

techniques to analyze and investigate Windows malware. Packt Publishing Ltd. 

[88] Yong Wong, M., Landen, M., Antonakakis, M., Blough, D.M., Redmiles, E.M. and 

Ahamad, M., 2021, November. An inside look into the practice of malware analysis. In 

Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications 

Security (pp. 3053-3069). 

[89] Quist, D.A. and Liebrock, L.M., 2009, October. Visualizing compiled executables for 

malware analysis. In 2009 6th International Workshop on Visualization for Cyber Security (pp. 

27-32). IEEE. 

[90] Mohaisen, A., Alrawi, O. and Mohaisen, M., 2015. AMAL: high-fidelity, behavior-based 

automated malware analysis and classification. computers & security, 52, pp.251-266. 

[91] Liu, W., Ren, P., Liu, K. and Duan, H.X., 2011, September. Behavior-based malware 

analysis and detection. In 2011 first international workshop on complexity and data mining (pp. 

39-42). IEEE. 

[92] Bayer, U., Kirda, E. and Kruegel, C., 2010, March. Improving the efficiency of dynamic 

malware analysis. In Proceedings of the 2010 ACM Symposium on Applied Computing (pp. 

1871-1878). 

[93] Prayudi, Y. and Riadi, I., 2015. Implementation of malware analysis using static and 

dynamic analysis method. International Journal of Computer Applications, 117(6). 

[92] Eagle, C., 2004. Attacking Obfuscated Code with IDA Pro. Black Hat. 

[94] Or-Meir, O., Nissim, N., Elovici, Y. and Rokach, L., 2019. Dynamic malware analysis in 

the modern era—A state of the art survey. ACM Computing Surveys (CSUR), 52(5), pp.1-48. 

[95] Eagle, C. and Nance, K., 2020. The Ghidra Book: The Definitive Guide. no starch press. 



[96] Megira, S., Pangesti, A.R. and Wibowo, F.W., 2018, December. Malware analysis and 

detection using reverse engineering technique. In Journal of Physics: Conference Series (Vol. 

1140, No. 1, p. 012042). IOP Publishing. 

[97] Bermejo Higuera, J., Abad Aramburu, C., Bermejo Higuera, J.R., Sicilia Urban, M.A. and 

Sicilia Montalvo, J.A., 2020. Systematic approach to malware analysis (SAMA). Applied 

Sciences, 10(4), p.1360. 

[98] Sun, H.M., Lin, Y.H. and Wu, M.F., 2006. API monitoring system for defeating worms 

and exploits in MS-Windows system. In Information Security and Privacy: 11th Australasian 

Conference, ACISP 2006, Melbourne, Australia, July 3-5, 2006. Proceedings 11 (pp. 159-170). 

Springer Berlin Heidelberg. 

[99] Ucci, D., Aniello, L. and Baldoni, R., 2019. Survey of machine learning techniques for 

malware analysis. Computers & Security, 81, pp.123-147. 

[100] Lengyel, T.K., Maresca, S., Payne, B.D., Webster, G.D., Vogl, S. and Kiayias, A., 2014, 

December. Scalability, fidelity and stealth in the DRAKVUF dynamic malware analysis 

system. In Proceedings of the 30th annual computer security applications conference (pp. 386-

395). 

[101] Ferreira, D.T., 2023. Automatic binary patching for flaws repairing using static rewriting 

and reverse dataflow analysis (Doctoral dissertation). 

[102] Vasilescu, M., Gheorghe, L. and Tapus, N., 2014, September. Practical malware analysis 

based on sandboxing. In 2014 RoEduNet Conference 13th Edition: Networking in Education 

and Research Joint Event RENAM 8th Conference (pp. 1-6). IEEE. 

[103] Sabanal, P.V. and Yason, M.V., 2007. Reversing C++. Black Hat DC. 

[104] Egele, M., Scholte, T., Kirda, E. and Kruegel, C., 2008. A survey on automated dynamic 

malware-analysis techniques and tools. ACM computing surveys (CSUR), 44(2), pp.1-42. 

[105] Ferenc, R., Beszédes, Á., Tarkiainen, M. and Gyimóthy, T., 2002, October. Columbus-

reverse engineering tool and schema for C++. In International Conference on Software 

Maintenance, 2002. Proceedings. (pp. 172-181). IEEE. 



[106] Bruce Dang , Practical Reverse Engineering: x86, x64, ARM, Windows Kernel, 

Reversing Tools, and Obfuscation, Wiley Publishing, 2014  

[107] Reverse-Tips, June 2022, https://ppppz.net/2022/06/12/Reverse-Tips/,  retrieved June 

2022. 

[108] Eldad Eilam, Reversing: Secrets of Reverse Engineering, Wiley Publishing, 2005  

[109] DRAKVUF Black-box Binary Analysis System, https://drakvuf.com/, retrieved Feb. 

2019.  

[110] CVE-2020-1135, November 2019, https://cve.mitre.org/cgi-

bin/cvename.cgi?name=CVE-2020-1135, retrieved December 2019. 

[111] Sutton, M., Greene, A. and Amini, P., 2007. Fuzzing: brute force vulnerability discovery. 

Pearson Education. 

[115] Madjid Kara, Olfa Lamouchi, Amar Ramdane-Cherif, Software quality assessment 

algorithm based on fuzzy logic, International Journal of ubiquitous systems and pervasive 

networks (JUSPN), volume 8, issue1, 2017, pages 01-09 

[113] Cha, S.K., Woo, M. and Brumley, D., 2015, May. Program-adaptive mutational fuzzing. 

In 2015 IEEE Symposium on Security and Privacy (pp. 725-741). IEEE. 

[114] Chen, C., Cui, B., Ma, J., Wu, R., Guo, J. and Liu, W., 2018. A systematic review of 

fuzzing techniques. Computers & Security, 75, pp.118-137. 

[115] Böhme, M., Pham, V.T. and Roychoudhury, A., 2016, October. Coverage-based greybox 

fuzzing as markov chain. In Proceedings of the 2016 ACM SIGSAC Conference on Computer 

and Communications Security (pp. 1032-1043). 

[116] Böhme, M., Pham, V.T., Nguyen, M.D. and Roychoudhury, A., 2017, October. Directed 

greybox fuzzing. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and 

Communications Security (pp. 2329-2344). 

[117] Pham, V.T., Böhme, M., Santosa, A.E., Căciulescu, A.R. and Roychoudhury, A., 2019. 

Smart greybox fuzzing. IEEE Transactions on Software Engineering, 47(9), pp.1980-1997. 



[118] Zeller, A., Gopinath, R., Böhme, M., Fraser, G. and Holler, C., 2019. The fuzzing book. 

[119] Serebryany, K., 2016, November. Continuous fuzzing with libfuzzer and 

addresssanitizer. In 2016 IEEE Cybersecurity Development (SecDev) (pp. 157-157). IEEE. 

[120] Lee, B., Song, C., Jang, Y., Wang, T., Kim, T., Lu, L. and Lee, W., 2015, February. 

Preventing Use-after-free with Dangling Pointers Nullification. In NDSS.  

[121] Österlund, S., Razavi, K., Bos, H. and Giuffrida, C., 2020, August. Parmesan: Sanitizer-

guided greybox fuzzing. In Proceedings of the 29th USENIX Conference on Security 

Symposium (pp. 2289-2306). 

[122] Zhu, X. and Böhme, M., 2021, November. Regression greybox fuzzing. In Proceedings 

of the 2021 ACM SIGSAC Conference on Computer and Communications Security (pp. 2169-

2182). 

[123] Herrera, A., Gunadi, H., Magrath, S., Norrish, M., Payer, M. and Hosking, A.L., 2021, 

July. Seed selection for successful fuzzing. In Proceedings of the 30th ACM SIGSOFT 

International Symposium on Software Testing and Analysis (pp. 230-243). 

[124] Devi, D., Pathak, D. and Nandi, S., 2010. Vulnerabilities in Web Browsers. Indian 

Institute of Technology., Guwahati., India. 

[125] Barth, A., Jackson, C., Reis, C. and TGC Team, 2008. The security architecture of the 

chromium browser. In Technical report. Stanford University. 

[126] Analysis of a Chrome Zero Day: CVE-2019-5786, March 2020, 

https://www.mcafee.com/blogs/other-blogs/mcafee-labs/analysis-of-a-chrome-zero-day-cve-

2019-5786/, retrieved March 2019 

[127] Sotirov, A. and Dowd, M., 2008. Bypassing browser memory protections. Proceedings 

of BlackHat, 2008. 

[128] Sayar, I., Bartel, A., Bodden, E. and Le Traon, Y., 2023. An in-depth study of java 

deserialization remote-code execution exploits and vulnerabilities. ACM Transactions on 

Software Engineering and Methodology, 32(1), pp.1-45. 



[129] CVE-2019-5786 Chrome 72.0.3626.119 stable FileReader UaF exploit for Windows 7 

x86, Mar. 2019, https://github.com/exodusintel/CVE-2019-5786, retrieved June 2021 

[130] Manhas, S. and Taterh, S., 2018. A Comparative Analysis of Various Vulnerabilities 

Occur in Google Chrome. In Soft Computing: Theories and Applications: Proceedings of 

SoCTA 2016, Volume 1 (pp. 51-59). Springer Singapore.  



 

 

 


